论文标题

使用机器学习的暗能量各向异性压力的提示

Hints of dark energy anisotropic stress using Machine Learning

论文作者

Arjona, Rubén, Nesseris, Savvas

论文摘要

在高红移处对Planck数据和类星体的最新分析表明,可能与$λ$冷的暗物质模型($λ$ CDM)的偏差,其中$λ$是宇宙常数。在这里,我们使用机器学习方法通​​过使用最新的宇宙学数据来调查低红移和高红移的$λ$ CDM的任何可能偏差。具体来说,我们通过重建其状态$ W(z)$的方程,以独立方式来探索黑暗能源的性质(de),物质密度扰动的增长指数$γ(z)$,线性de anisotropic de anisotropic posite $η_ $ c_ \ textrm {s,de}^2(z)$ de扰动。我们在高红移时发现$ w(z)$的$ w(z)$的$ \sim2σ$偏差为$ \sim2.5σ$级别为$ z = 0.1 $的$ \sim2.5σ$ evelp,a $ \sim2σ$偏差的各向异性压力在低红色和$ \sim4σ$上与unity的unity偏离。这些结果暗示,要么在声速中存在非绝热成分,要么是各向异性应力的存在,因此暗示了可能与$λ$ CDM模型的偏差。

Recent analyses of the Planck data and quasars at high redshifts have suggested possible deviations from the flat $Λ$ cold dark matter model ($Λ$CDM), where $Λ$ is the cosmological constant. Here we use machine learning methods to investigate any possible deviations from $Λ$CDM at both low and high redshifts by using the latest cosmological data. Specifically, we apply the Genetic Algorithms to explore the nature of dark energy (DE) in a model independent fashion by reconstructing its equation of state $w(z)$, the growth index of matter density perturbations $γ(z)$, the linear DE anisotropic stress $η_\textrm{DE}(z)$ and the adiabatic sound speed $c_\textrm{s,DE}^2(z)$ of DE perturbations. We find a $\sim2σ$ deviation of $w(z)$ from -1 at high redshifts, the adiabatic sound speed is negative at the $\sim2.5σ$ level at $z=0.1$ and a $\sim2σ$ deviation of the anisotropic stress from unity at low redshifts and $\sim4 σ$ at high redshifts. These results hint towards either the presence of an non-adiabatic component in the DE sound speed or the presence of DE anisotropic stress, thus hinting at possible deviations from the $Λ$CDM model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源