论文标题

使用X射线(2D)图像上的神经网络估算和抽象骨骼的3D结构

Estimating and abstracting the 3D structure of bones using neural networks on X-ray (2D) images

论文作者

Čavojská, Jana, Petrasch, Julian, Lehmann, Nicolas J., Voisard, Agnès, Böttcher, Peter

论文摘要

在本文中,我们提出了一种基于深度学习的方法,用于从一对2D X射线图像中估算骨骼的3D结构。我们的三胞胎损失训练的神经网络从一组预定义的形状中选择最紧密的3D骨形状。我们的预测在预测形状和真实形状之间的平均均方根(RMS)距离为1.08 mm,这比其他八个检查的3D骨重建方法的平均误差更准确。我们使用的预测过程是完全自动化的,与许多竞争方法不同,它不依赖于以前关于骨几何形状的知识。此外,我们的神经网络只能根据其X射线图像确定骨骼的身份。它计算每个2d X射线图像的低维表示(“嵌入”),因此仅根据其嵌入来比较不同的X射线图像。嵌入具有足够的信息,可以唯一地识别属于输入X射线图像的骨头CT,其精度为100%,因此可以用作该骨骼的一种指纹。可能的应用程序包括更快的,基于图像内容的骨数据库搜索法医目的。

In this paper, we present a deep-learning based method for estimating the 3D structure of a bone from a pair of 2D X-ray images. Our triplet loss-trained neural network selects the most closely matching 3D bone shape from a predefined set of shapes. Our predictions have an average root mean square (RMS) distance of 1.08 mm between the predicted and true shapes, making it more accurate than the average error achieved by eight other examined 3D bone reconstruction approaches. The prediction process that we use is fully automated and unlike many competing approaches, it does not rely on any previous knowledge about bone geometry. Additionally, our neural network can determine the identity of a bone based only on its X-ray image. It computes a low-dimensional representation ("embedding") of each 2D X-ray image and henceforth compares different X-ray images based only on their embeddings. An embedding holds enough information to uniquely identify the bone CT belonging to the input X-ray image with a 100% accuracy and can therefore serve as a kind of fingerprint for that bone. Possible applications include faster, image content-based bone database searches for forensic purposes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源