论文标题

椭圆形R-CNN:学会从聚类和遮挡中推断椭圆形对象

Ellipse R-CNN: Learning to Infer Elliptical Object from Clustering and Occlusion

论文作者

Dong, Wenbo, Roy, Pravakar, Peng, Cheng, Isler, Volkan

论文摘要

杂乱无章的场景中被严重的物体(例如树木中的水果簇)的图像很难分割。为了在这种情况下进一步检索每个对象的3D大小和6D姿势,由于捕获了对象几何形状的一小部分,因此边界框并不可靠。我们介绍了第一个基于CNN的椭圆检测器,称为Ellipse R-CNN,以表示并推断遮挡对象为椭圆。我们首先基于掩盖R-CNN体系结构进行椭圆对象检测的牢固而紧凑的椭圆回归。我们的方法可以推断出多个椭圆对象的参数,即使它们被其他相邻对象遮住了。为了获得更好的遮挡处理,我们为回归阶段利用了精致的特征区域,并整合了学习不同的闭塞模式以计算最终检测得分的U-NET结构。椭圆回归的正确性通过对聚类椭圆的合成数据进行的实验验证。我们进一步定量和定性地证明,我们的方法的表现优于最新模型(即蒙版R-CNN,然后是椭圆拟合)及其在闭塞和簇的椭圆形对象的合成和真实数据集上的三个变体。

Images of heavily occluded objects in cluttered scenes, such as fruit clusters in trees, are hard to segment. To further retrieve the 3D size and 6D pose of each individual object in such cases, bounding boxes are not reliable from multiple views since only a little portion of the object's geometry is captured. We introduce the first CNN-based ellipse detector, called Ellipse R-CNN, to represent and infer occluded objects as ellipses. We first propose a robust and compact ellipse regression based on the Mask R-CNN architecture for elliptical object detection. Our method can infer the parameters of multiple elliptical objects even they are occluded by other neighboring objects. For better occlusion handling, we exploit refined feature regions for the regression stage, and integrate the U-Net structure for learning different occlusion patterns to compute the final detection score. The correctness of ellipse regression is validated through experiments performed on synthetic data of clustered ellipses. We further quantitatively and qualitatively demonstrate that our approach outperforms the state-of-the-art model (i.e., Mask R-CNN followed by ellipse fitting) and its three variants on both synthetic and real datasets of occluded and clustered elliptical objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源