论文标题

表征对加性随机热方程的灯芯功率的支持

Characterization of the support for Wick powers of the additive stochastic heat equation

论文作者

Matsuda, Toyomu

论文摘要

令$ z $为添加剂随机加热方程的固定解决方案$ \ partial_t z =(δ-1)Z +ξ$在二维曲线上,其中$ξ$是时空白噪声。本文的目的是确定Wick Powers $ \ {z^{:k:} \} _ {k = 1}^{\ infty} $的支持。这导致了动态$ p(φ)_2 $方程的支持定理的基本证明。此外,我们表明该方法可用于确定$ l^2 $ - 相间的高斯乘法性混乱的法律的支持。

Let $Z$ be the stationary solution of the additive stochastic heat equation $\partial_t Z = (Δ- 1) Z + ξ$ on the two-dimensional torus, where $ξ$ is the space-time white noise. The aim of this paper is to determine the support of Wick powers $\{Z^{:k:}\}_{k=1}^{\infty}$. This leads to an elementary proof of a support theorem for the dynamic $P(Φ)_2$ equation. In addition, we show that the approach can be used to determine the support of the law of the Gaussian multiplicative chaos in the $L^2$-phase.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源