论文标题
耦合反应扩散系统中的时空混乱和准图案
Spatiotemporal chaos and quasipatterns in coupled reaction-diffusion systems
论文作者
论文摘要
在耦合的反应扩散系统中,具有两个不同长度尺度的模式可以相互作用以产生各种时空模式。这些模式之间的三波相互作用可以解释空间复杂的稳定模式和包括时空混乱在内的时变状态的发生。相互作用可以采用两个短波的形式,其中不同的方向与一个长波或反之亦然相互作用。我们研究了这种三波相互作用在耦合的Brusselator系统中的作用。除了发现波浪相互加强时发现简单的稳定模式外,我们还可以找到包括准图案在内的空间复杂但稳定的模式。当波浪相互竞争时,时间变化的状态(例如时空混乱)也可能存在。三波相互作用方程中二次系数的符号区分了这两种情况。通过操纵化学模型的参数,可以鼓励这些各种状态的形成,因为我们通过广泛的数值模拟确认。我们的论点使我们能够预测何时会发现时空混乱:在这种情况下,标准的非线性方法失败。这些参数非常笼统,适用于广泛的模式形成系统,包括法拉第波浪实验。
In coupled reaction-diffusion systems, modes with two different length scales can interact to produce a wide variety of spatiotemporal patterns. Three-wave interactions between these modes can explain the occurrence of spatially complex steady patterns and time-varying states including spatiotemporal chaos. The interactions can take the form of two short waves with different orientations interacting with one long wave, or vice-versa. We investigate the role of such three-wave interactions in a coupled Brusselator system. As well as finding simple steady patterns when the waves reinforce each other, we can also find spatially complex but steady patterns, including quasipatterns. When the waves compete with each other, time varying states such as spatiotemporal chaos are also possible. The signs of the quadratic coefficients in three-wave interaction equations distinguish between these two cases. By manipulating parameters of the chemical model, the formation of these various states can be encouraged, as we confirm through extensive numerical simulation. Our arguments allow us to predict when spatiotemporal chaos might be found: standard nonlinear methods fail in this case. The arguments are quite general and apply to a wide class of pattern-forming systems, including the Faraday wave experiment.