论文标题

使用BigBigan从fMRI模式中重建自然场景

Reconstructing Natural Scenes from fMRI Patterns using BigBiGAN

论文作者

Mozafari, Milad, Reddy, Leila, VanRullen, Rufin

论文摘要

从大脑成像数据中解码和重建图像是一个引起人们兴趣的研究领域。深层生成神经网络的最新进展引入了解决这个问题的新机会。在这里,我们采用了最近提出的大规模双向生成对抗网络(称为BigBigan)来解码和重建fMRI模式的自然场景。 BigBigan将图像转换为120维的潜在空间,该空间将类和属性信息编码在一起,还可以根据其潜在向量重建图像。我们计算了fMRI数据之间的线性映射,该数据在150个不同类别的ImageNet及其相应的Bigbigan潜在矢量的图像上获取。然后,我们将此映射应用于从50个看不见类别的50个新测试图像获得的fMRI活动模式,以检索其潜在矢量并重建相应的图像。从预测的潜在载体中解码的成对图像是高度准确的(84%)。此外,定性和定量评估表明,所得的图像重建在视觉上是合理的,成功捕获了原始图像的许多属性,并且与原始内容具有很高的知觉相似性。该方法为基于fMRI的自然图像重建建立了一种新的最新最新技术,并可以灵活地更新以考虑到自然场景图像的生成模型的未来改进。

Decoding and reconstructing images from brain imaging data is a research area of high interest. Recent progress in deep generative neural networks has introduced new opportunities to tackle this problem. Here, we employ a recently proposed large-scale bi-directional generative adversarial network, called BigBiGAN, to decode and reconstruct natural scenes from fMRI patterns. BigBiGAN converts images into a 120-dimensional latent space which encodes class and attribute information together, and can also reconstruct images based on their latent vectors. We computed a linear mapping between fMRI data, acquired over images from 150 different categories of ImageNet, and their corresponding BigBiGAN latent vectors. Then, we applied this mapping to the fMRI activity patterns obtained from 50 new test images from 50 unseen categories in order to retrieve their latent vectors, and reconstruct the corresponding images. Pairwise image decoding from the predicted latent vectors was highly accurate (84%). Moreover, qualitative and quantitative assessments revealed that the resulting image reconstructions were visually plausible, successfully captured many attributes of the original images, and had high perceptual similarity with the original content. This method establishes a new state-of-the-art for fMRI-based natural image reconstruction, and can be flexibly updated to take into account any future improvements in generative models of natural scene images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源