论文标题

标量klein-戈登方程及其分析持续的分散图

Scalar Klein--Gordon equation and its analytically continued dispersion diagram

论文作者

Korolkov, A. I., Shanin, A. V.

论文摘要

标量klein-gordon方程描述了带有截止的波导中的波动运动。例如,可以通过标量klein-gordon方程来描述将弹性线锚定在实心底座上的弹性绳的位移。我们使用分析图的分析延续概念分析了该方程。特别是,表明色散图在拓扑上等同于分析嵌入在二维复合空间中的管。使用Cauchy的定理在此管子上研究了相应的傅立叶积分。标量klein-gordon方程的基本属性已建立。

The scalar Klein-Gordon equation describes wave motion in a waveguide with a cut-off. For example, the displacement of an elastic cord anchored to a solid base by elastic elements can be described by the scalar Klein-Gordon equation. We analyse this equation using the concept of analytical continuation of dispersion diagram. Particularly, it is shown that the dispersion diagram is topologically equivalent to a tube analytically embedded in two-dimensional complex space. The corresponding Fourier integral is studied on this tube using the Cauchy's theorem. The basic properties of the scalar Klein-Gordon equation are established.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源