论文标题

关于从美国选择中提取隐含信息的校准神经网络

On Calibration Neural Networks for extracting implied information from American options

论文作者

Liu, Shuaiqiang, Leitao, Álvaro, Borovykh, Anastasia, Oosterlee, Cornelis W.

论文摘要

从观察到的期权价格中提取隐含信息,例如波动性和/或股息,在处理美国期权时是一项艰巨的任务,因为要解决数千次解决相应的数学问题所需的计算成本。我们将采用数据驱动的机器学习方法来估计以快速,健壮的方式估算美国期权的黑色暗示波动和股息收益率。为了确定隐含的波动率,在感兴趣的计算域上,人工神经网络近似逆函数,该网络将离线(训练)和在线(预测)阶段取消,从而消除了迭代过程的需求。对于隐含的股息收益率,我们将逆问题提出为校准问题,并同时确定隐含的波动性和股息收率。为此,引入了校准神经网络(CANN)的通用且可靠的校准框架,以估计多个参数。结果表明,机器学习可以用作一种有效的数值技术,可以从美国选项中提取隐含信息。

Extracting implied information, like volatility and/or dividend, from observed option prices is a challenging task when dealing with American options, because of the computational costs needed to solve the corresponding mathematical problem many thousands of times. We will employ a data-driven machine learning approach to estimate the Black-Scholes implied volatility and the dividend yield for American options in a fast and robust way. To determine the implied volatility, the inverse function is approximated by an artificial neural network on the computational domain of interest, which decouples the offline (training) and online (prediction) phases and thus eliminates the need for an iterative process. For the implied dividend yield, we formulate the inverse problem as a calibration problem and determine simultaneously the implied volatility and dividend yield. For this, a generic and robust calibration framework, the Calibration Neural Network (CaNN), is introduced to estimate multiple parameters. It is shown that machine learning can be used as an efficient numerical technique to extract implied information from American options.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源