论文标题

矢量符号体系结构的比较

A comparison of Vector Symbolic Architectures

论文作者

Schlegel, Kenny, Neubert, Peer, Protzel, Peter

论文摘要

向量符号体系结构将高维矢量空间与一组精心设计的运算符相结合,以便使用大型数值向量执行符号计算。主要目标是剥削其代表权和处理模糊性和歧义的能力。在过去的几年中,已经提出了一些VSA实施。可用的实现在基础向量空间和VSA运营商的特定实现方面有所不同。本文概述了11个可用的VSA实现,并讨论了它们在基础矢量空间和运营商中的共同点和差异。我们创建了可用的结合操作的分类法,并使用类似推理的示例显示了非自我分离结合操作的重要分类。主要的贡献是对可用实现的实验比较,以评估(1)束的能力,(2)非脱离脱落的不绑定操作的近似质量,(3)将结合结合和捆绑操作组合对查询答案性能的影响,以及(4)在两个示例应用程序上的性能:Visasual Place Place-plote-plote-corectition。我们希望这种比较和系统化与VSA的开发有关,并支持为特定任务选择适当的VSA。实现可用。

Vector Symbolic Architectures combine a high-dimensional vector space with a set of carefully designed operators in order to perform symbolic computations with large numerical vectors. Major goals are the exploitation of their representational power and ability to deal with fuzziness and ambiguity. Over the past years, several VSA implementations have been proposed. The available implementations differ in the underlying vector space and the particular implementations of the VSA operators. This paper provides an overview of eleven available VSA implementations and discusses their commonalities and differences in the underlying vector space and operators. We create a taxonomy of available binding operations and show an important ramification for non self-inverse binding operations using an example from analogical reasoning. A main contribution is the experimental comparison of the available implementations in order to evaluate (1) the capacity of bundles, (2) the approximation quality of non-exact unbinding operations, (3) the influence of combining binding and bundling operations on the query answering performance, and (4) the performance on two example applications: visual place- and language-recognition. We expect this comparison and systematization to be relevant for development of VSAs, and to support the selection of an appropriate VSA for a particular task. The implementations are available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源