论文标题

噪声2英尺:自我监督的深卷卷

Noise2Inverse: Self-supervised deep convolutional denoising for tomography

论文作者

Hendriksen, Allard A., Pelt, Daniel M., Batenburg, K. Joost

论文摘要

从嘈杂的间接测量值中恢复高质量的图像是许多应用程序的重要问题。对于此类反问题,受监督的深卷卷神经网络(CNN)基于基于剥离的方法的结果表现出了很强的结果,但是这些监督方法的成功在很大程度上取决于相似测量值的高质量培训数据集的可用性。对于图像denoising,可以通过假设两个不同像素中的噪声不相关,可以使用无单独的训练数据集启用训练。但是,此假设不适合反问题,从而导致现有方法产生的Denocied图像中的伪影。在这里,我们提出了Noise2inverse,这是一种基于CNN的深层denoising方法,用于线性图像重建算法,不需要任何其他干净或嘈杂的数据。通过利用噪声模型来计算多个统计独立的重建,培训基于CNN的DeNoiser可以启用。我们开发了一个理论框架,该框架表明,假设所测得的噪声是独立的,零均值,则这种训练确实获得了CNN的CNN。在模拟的CT数据集上,与最新的图像去核方法和常规的重建方法相比,Noige2-Inverse表明峰值信噪比和结构相似性指数的改善,例如总差异最小化。我们还证明,该方法能够显着降低具有挑战性的现实实验数据集中的噪声。

Recovering a high-quality image from noisy indirect measurements is an important problem with many applications. For such inverse problems, supervised deep convolutional neural network (CNN)-based denoising methods have shown strong results, but the success of these supervised methods critically depends on the availability of a high-quality training dataset of similar measurements. For image denoising, methods are available that enable training without a separate training dataset by assuming that the noise in two different pixels is uncorrelated. However, this assumption does not hold for inverse problems, resulting in artifacts in the denoised images produced by existing methods. Here, we propose Noise2Inverse, a deep CNN-based denoising method for linear image reconstruction algorithms that does not require any additional clean or noisy data. Training a CNN-based denoiser is enabled by exploiting the noise model to compute multiple statistically independent reconstructions. We develop a theoretical framework which shows that such training indeed obtains a denoising CNN, assuming the measured noise is element-wise independent and zero-mean. On simulated CT datasets, Noise2Inverse demonstrates an improvement in peak signal-to-noise ratio and structural similarity index compared to state-of-the-art image denoising methods and conventional reconstruction methods, such as Total-Variation Minimization. We also demonstrate that the method is able to significantly reduce noise in challenging real-world experimental datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源