论文标题

与对抗性自主系统应用程序的隐藏马尔可夫模型的逆过滤

Inverse Filtering for Hidden Markov Models with Applications to Counter-Adversarial Autonomous Systems

论文作者

Mattila, Robert, Rojas, Cristian R., Krishnamurthy, Vikram, Wahlberg, Bo

论文摘要

贝叶斯过滤涉及计算随机动态系统状态的后验分布,并且给定观测值。在本文中,是由反交流系统中的应用激发的,我们考虑以下反向过滤问题:给定一系列来自贝叶斯滤波器的后验分布,可以推断出国家过渡内核,传感器的观察可能性和测量值?对于在噪声中观察到的有限状态马尔可夫链(隐藏的马尔可夫模型),我们表明,最小二乘适合估计参数和观测值,等于与非凸目标的组合优化问题。取而代之的是,通过利用相应贝叶斯过滤器的代数结构,我们提出了一种基于凸优化的算法,用于重建过渡内核,观察可能性和观察结果。我们讨论并得出可识别性的条件。作为结果的应用,我们说明了反对抗系统的设计:通过观察自主敌人的行动,我们估计其传感器的准确性及其所收到的观察结果。在数值示例中评估了所提出的算法。

Bayesian filtering deals with computing the posterior distribution of the state of a stochastic dynamic system given noisy observations. In this paper, motivated by applications in counter-adversarial systems, we consider the following inverse filtering problem: Given a sequence of posterior distributions from a Bayesian filter, what can be inferred about the transition kernel of the state, the observation likelihoods of the sensor and the measured observations? For finite-state Markov chains observed in noise (hidden Markov models), we show that a least-squares fit for estimating the parameters and observations amounts to a combinatorial optimization problem with non-convex objective. Instead, by exploiting the algebraic structure of the corresponding Bayesian filter, we propose an algorithm based on convex optimization for reconstructing the transition kernel, the observation likelihoods and the observations. We discuss and derive conditions for identifiability. As an application of our results, we illustrate the design of counter-adversarial systems: By observing the actions of an autonomous enemy, we estimate the accuracy of its sensors and the observations it has received. The proposed algorithms are evaluated in numerical examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源