论文标题
截断均匀MPS的切线空间方法
Tangent-space methods for truncating uniform MPS
论文作者
论文摘要
量子张量网络模拟中的中央原始词是近似具有较低键尺寸之一的矩阵乘积状态的问题。此问题形成了时间演化算法中的中央瓶颈,并构成了预测的纠缠对面。我们制定基于切线空间的变分算法,以实现均匀(无限)矩阵乘积状态。该算法表现出对计算成本的有利缩放,我们通过涉及矩阵乘积状态与矩阵产品运算符的乘以乘法的几个示例来证明其有用性。
A central primitive in quantum tensor network simulations is the problem of approximating a matrix product state with one of a lower bond dimension. This problem forms the central bottleneck in algorithms for time evolution and for contracting projected entangled pair states. We formulate a tangent-space based variational algorithm to achieve this for uniform (infinite) matrix product states. The algorithm exhibits a favourable scaling of the computational cost, and we demonstrate its usefulness by several examples involving the multiplication of a matrix product state with a matrix product operator.