论文标题

将硬物理限制嵌入3D湍流的神经网络粗粒度

Embedding Hard Physical Constraints in Neural Network Coarse-Graining of 3D Turbulence

论文作者

Mohan, Arvind T., Lubbers, Nicholas, Livescu, Daniel, Chertkov, Michael

论文摘要

近年来,深度学习方法在对物理科学中的复杂系统进行建模方面表现出了很大的希望。深度学习PDE的主要挑战是实施物理限制和边界条件。在这项工作中,我们提出了一个通用框架,将不可压缩的流体直接嵌入卷积神经网络中,并将其应用于湍流的粗粒度。这些物理学的神经网络利用数值方法和计算流体动力学利用可解释的策略来通过利用基础方程的数学特性来强制实施物理定律和边界条件。我们证明了三维完全发达的湍流的结果,表明该技术会大大改善质量的局部保护,而没有根据表征流体流动的其他几种指标来牺牲性能。

In the recent years, deep learning approaches have shown much promise in modeling complex systems in the physical sciences. A major challenge in deep learning of PDEs is enforcing physical constraints and boundary conditions. In this work, we propose a general framework to directly embed the notion of an incompressible fluid into Convolutional Neural Networks, and apply this to coarse-graining of turbulent flow. These physics-embedded neural networks leverage interpretable strategies from numerical methods and computational fluid dynamics to enforce physical laws and boundary conditions by taking advantage the mathematical properties of the underlying equations. We demonstrate results on three-dimensional fully-developed turbulence, showing that this technique drastically improves local conservation of mass, without sacrificing performance according to several other metrics characterizing the fluid flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源