论文标题

预测马来西亚的物联网服务对智能移动性的采用:Sem-nural Hybrid Pilot研究

Predicting IoT Service Adoption towards Smart Mobility in Malaysia: SEM-Neural Hybrid Pilot Study

论文作者

Ahmed, Waqas, Hizam, Sheikh Muhamad, Sentosa, Ilham, Akter, Habiba, Yafi, Eiad, Ali, Jawad

论文摘要

Smart City与数字环境同步,其运输系统与RFID传感器,物联网(IoT)和人工智能具有活力。但是,如果没有用户对技术的行为评估,则无法实现智能移动性的最终实用性。本文旨在通过使用SEM神经混合方法进行初步数据分析来制定研究智能移动性前提的研究框架。这项研究以研究观点为马来西亚采用了智能移动服务,并将技术接受模型(TAM)作为理论基础。假设了一个扩展的TAM模型,该模型具有五个外部因素(数字敏捷性,物联网服务质量,侵入性问题,社交电子语言和主观规范)。数据是通过马来西亚克兰谷的一项试点调查收集的。然后分析响应的可靠性,有效性和模型的准确性。最后,通过结构方程建模(SEM)和人工神经网络(ANN)来解释因果关系。该论文将对所有利益相关者的公路技术接纳有更好的了解,以完善,修改和更新其政策。拟议的框架将提出更广泛的方法,以实现个人水平技术的接受。

Smart city is synchronized with digital environment and its transportation system is vitalized with RFID sensors, Internet of Things (IoT) and Artificial Intelligence. However, without user's behavioral assessment of technology, the ultimate usefulness of smart mobility cannot be achieved. This paper aims to formulate the research framework for prediction of antecedents of smart mobility by using SEM-Neural hybrid approach towards preliminary data analysis. This research undertook smart mobility services adoption in Malaysia as study perspective and applied the Technology Acceptance Model (TAM) as theoretical basis. An extended TAM model was hypothesized with five external factors (digital dexterity, IoT service quality, intrusiveness concerns, social electronic word of mouth and subjective norm). The data was collected through a pilot survey in Klang Valley, Malaysia. Then responses were analyzed for reliability, validity and accuracy of model. Finally, the causal relationship was explained by Structural Equation Modeling (SEM) and Artificial Neural Networking (ANN). The paper will share better understanding of road technology acceptance to all stakeholders to refine, revise and update their policies. The proposed framework will suggest a broader approach to individual level technology acceptance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源