论文标题

反问题的深层综合正规化

Deep synthesis regularization of inverse problems

论文作者

Obmann, Daniel, Schwab, Johannes, Haltmeier, Markus

论文摘要

最近,已经开发了大量有效的深度学习方法,并显示出出色的数值性能。但是,对于这些深度学习方法,缺少以重建保证的形式的坚实理论基础。相反,对于经典的重建方法,例如凸变变和基于框架的正则化,理论收敛和收敛速率结果已得到很好的确定。在本文中,我们使用神经网络作为非线性合成操作员介绍了深层合成正则化(DESYRE),从而弥合了这两个世界之间的差距。所提出的方法允许利用对可用培训数据进行良好调整的深度学习优势,另一方面是稳固的数学基础。我们提出了完整的收敛分析,并为拟议的深层合成正规化提供了收敛速率。我们提出了一种构建合成网络的策略,作为分析合成序列的一部分以及适当的训练策略。数值结果表明我们方法的合理性。

Recently, a large number of efficient deep learning methods for solving inverse problems have been developed and show outstanding numerical performance. For these deep learning methods, however, a solid theoretical foundation in the form of reconstruction guarantees is missing. In contrast, for classical reconstruction methods, such as convex variational and frame-based regularization, theoretical convergence and convergence rate results are well established. In this paper, we introduce deep synthesis regularization (DESYRE) using neural networks as nonlinear synthesis operator bridging the gap between these two worlds. The proposed method allows to exploit the deep learning benefits of being well adjustable to available training data and on the other hand comes with a solid mathematical foundation. We present a complete convergence analysis with convergence rates for the proposed deep synthesis regularization. We present a strategy for constructing a synthesis network as part of an analysis-synthesis sequence together with an appropriate training strategy. Numerical results show the plausibility of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源