论文标题
时间序列分析的可变lag granger因果关系和转移熵
Variable-lag Granger Causality and Transfer Entropy for Time Series Analysis
论文作者
论文摘要
Granger因果关系是时间序列数据中因果推断的基本技术,该技术通常用于社会和生物科学。 Granger因果关系的典型操作是一个有力的假设,即效果时间序列的每个时间点都受其他时间序列和固定时间延迟的组合的影响。固定时间延迟的假设也存在于转移熵中,这被认为是Granger因果关系的非线性版本。但是,固定时间延迟的假设在许多应用中并不存在,例如集体行为,金融市场和许多自然现象。为了解决这个问题,我们开发了可变的lag granger因果关系和可变的落叶转移熵,Granger因果关系和转移熵的概括,从而放宽了固定时间延迟的假设,并允许因任意时间延迟而影响效果。此外,我们提出了推断可变lag granger因果关系和转移熵关系的方法。在我们的方法中,我们利用动态时间扭曲(DTW)的最佳翘曲路径来推断可变滞后因果关系。我们展示了我们在研究协调集体行为和其他实际休闲推动数据集的应用程序上的方法,并表明我们所提出的方法在模拟和现实世界中的数据集中的表现要好于几种现有方法。我们的方法可以应用于时间序列分析的任何领域。此工作的软件可在R-Cran软件包:VLTIMECAUSALITY中获得。
Granger causality is a fundamental technique for causal inference in time series data, commonly used in the social and biological sciences. Typical operationalizations of Granger causality make a strong assumption that every time point of the effect time series is influenced by a combination of other time series with a fixed time delay. The assumption of fixed time delay also exists in Transfer Entropy, which is considered to be a non-linear version of Granger causality. However, the assumption of the fixed time delay does not hold in many applications, such as collective behavior, financial markets, and many natural phenomena. To address this issue, we develop Variable-lag Granger causality and Variable-lag Transfer Entropy, generalizations of both Granger causality and Transfer Entropy that relax the assumption of the fixed time delay and allow causes to influence effects with arbitrary time delays. In addition, we propose methods for inferring both variable-lag Granger causality and Transfer Entropy relations. In our approaches, we utilize an optimal warping path of Dynamic Time Warping (DTW) to infer variable-lag causal relations. We demonstrate our approaches on an application for studying coordinated collective behavior and other real-world casual-inference datasets and show that our proposed approaches perform better than several existing methods in both simulated and real-world datasets. Our approaches can be applied in any domain of time series analysis. The software of this work is available in the R-CRAN package: VLTimeCausality.