论文标题

使用局部流线几何形状的不可压缩湍流中速度梯度动力学的表征

Characterization of velocity-gradient dynamics in incompressible turbulence using local streamline geometry

论文作者

Das, Rishita, Girimaji, Sharath S.

论文摘要

这项研究开发了对本地流线几何形状的全面描述,并使用所得的形状特征来表征速度梯度($ a_ {ij} $)动力学。通过扩展线性化的临界点分析,从$ a_ {ij} $中提取本地流线几何形状参数和比例因子(大小)。在目前的分析中,将$ a_ {ij} $分解为其大小($ a \ equiv \ equiv \ sqrt {a_ {a_ {ij} a_ {ij}} $),并归一化tensor $ b_ {ij} \ equiv equiv a__________ {ij {ij}}/a $。几何形状显示为仅由四个$ b_ {ij} $参数确定 - 第二不变,$ q $;第三不变,$ r $;中级应变率特征值,$ a_2 $;并且,涡度和中间应变率特征向量之间的角度,$ω_2$。速度梯度幅度$ a $仅在确定本地流线结构的规模方面起着作用。强制各向同性湍流的直接数值模拟数据($re_λ\ sim \ sim 200-600 $)用于建立流线形状和比例分布,然后表征速度梯度动力学。 $ Q $ -R $空间中的条件平均轨迹(CMT)揭示了重要的非本地压力和粘性动力学特征,这些特征从$ a_ {ij} $ - 不变性中并不明显。确定了两种不同类型的$ q $ - $ r $ $ $ $ cmts划分为saparatrix。内部轨迹以惯性压力相互作用为主,而粘性效应仅在外部轨迹中起重要作用。开发了$ Q $ - $ r $相位空间中惯性,压力和粘性效应的动力学系统表征。此外,还表明,通过不同拓扑的$ Q $ -R $ CMTS的停留时间与相应的人口分数非常相关。这些发现不仅可以提高人们对非本地动力学的了解,而且为开发拉格朗日速度梯度模型提供了重要的基础。

This study develops a comprehensive description of local streamline geometry and uses the resulting shape features to characterize velocity gradient ($A_{ij}$) dynamics. The local streamline geometric shape parameters and scale-factor (size) are extracted from $A_{ij}$ by extending the linearized critical point analysis. In the present analysis, $A_{ij}$ is factorized into its magnitude ($A \equiv \sqrt{A_{ij}A_{ij}}$) and normalized tensor $b_{ij} \equiv A_{ij}/A$. The geometric shape is shown to be determined exclusively by four $b_{ij}$ parameters -- second invariant, $q$; third invariant, $r$; intermediate strain-rate eigenvalue, $a_2$; and, angle between vorticity and intermediate strain-rate eigenvector, $ω_2$. Velocity gradient magnitude $A$ plays a role only in determining the scale of the local streamline structure. Direct numerical simulation data of forced isotropic turbulence ($Re_λ\sim 200 - 600$) is used to establish streamline shape and scale distribution and, then to characterize velocity-gradient dynamics. Conditional mean trajectories (CMTs) in $q$-$r$ space reveal important non-local features of pressure and viscous dynamics which are not evident from the $A_{ij}$-invariants. Two distinct types of $q$-$r$ CMTs demarcated by a separatrix are identified. The inner trajectories are dominated by inertia-pressure interactions and the viscous effects play a significant role only in the outer trajectories. Dynamical system characterization of inertial, pressure and viscous effects in the $q$-$r$ phase space is developed. Additionally, it is shown that the residence time of $q$-$r$ CMTs through different topologies correlate well with the corresponding population fractions. These findings not only lead to improved understanding of non-local dynamics, but also provide an important foundation for developing Lagrangian velocity-gradient models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源