论文标题
数据驱动的随机优化针对高风渗透条件下的电网调度
Data-Driven Stochastic Optimization for Power Grids Scheduling under High Wind Penetration
论文作者
论文摘要
为了解决环境关注并提高经济效率,风能迅速融入了智能电网。但是,风能的固有不确定性引起了运营挑战。为了确保具有成本效益,可靠和健壮的运营,找到可以正确且严格地对冲所有不确定性来源的最佳决策至关重要。在本文中,我们提出了数据驱动的随机单位承诺(SUC)来指导电网调度。具体而言,鉴于有限的历史数据,开发后验预测分布是为了量化风能预测不确定性,这构成了风力发电的固有不确定性和输入模型估计误差。对于复杂的电网系统,使用有限数量的方案来估计计划范围内的预期成本。为了进一步控制通过使用样本平均近似(SAA)引起的有限抽样误差的影响,我们提出了基于平行计算的优化解决方案方法,该方法可以快速找到可靠的最佳单位承诺决策,以应对各种不确定性来源。对六公里和118个公共汽车系统的实证研究表明,与现有的确定性和随机单位承诺方法相比,我们的方法可以提供更有效和稳健的性能。
To address the environmental concern and improve the economic efficiency, the wind power is rapidly integrated into smart grids. However, the inherent uncertainty of wind energy raises operational challenges. To ensure the cost-efficient, reliable and robust operation, it is critically important to find the optimal decision that can correctly and rigorously hedge against all sources of uncertainty. In this paper, we propose data-driven stochastic unit commitment (SUC) to guide the power grids scheduling. Specifically, given the finite historical data, the posterior predictive distribution is developed to quantify the wind power prediction uncertainty accounting for both inherent stochastic uncertainty of wind power generation and input model estimation error. For complex power grid systems, a finite number of scenarios is used to estimate the expected cost in the planning horizon. To further control the impact of finite sampling error induced by using the sample average approximation (SAA), we propose a parallel computing based optimization solution methodology, which can quickly find the reliable optimal unit commitment decision hedging against various sources of uncertainty. The empirical study over six-bus and 118-bus systems demonstrates that our approach can provide more efficient and robust performance than the existing deterministic and stochastic unit commitment approaches.