论文标题
击败AI:调查对抗人的注释以阅读理解
Beat the AI: Investigating Adversarial Human Annotation for Reading Comprehension
论文作者
论文摘要
注释方法中的创新一直是阅读理解(RC)数据集和模型的催化剂。挑战当前RC模型的最新趋势是在注释过程中涉及模型:人类在对抗性上创建问题,以使模型无法正确回答它们。在这项工作中,我们研究了这种注释方法,并将其应用于三种不同的设置,在注释循环中收集了36,000个样品,并逐渐强大。这使我们能够探讨诸如对抗效应的可重复性,从具有不同模型的强度的数据转移,以及在没有模型的情况下收集的数据的概括。我们发现,对对抗的样品进行的培训会导致对非对抗性收集的数据集进行强烈的概括,但随着越来越强大的模型,逐步的性能恶化。此外,我们发现更强大的模型仍然可以从基本较弱的模型中收集的数据集中学习。当对循环中使用BIDAF模型收集的数据进行培训时,Roberta在接受训练时无法回答的问题达到39.9F1,仅比使用Roberta本身对数据进行培训时(41.0F1)。
Innovations in annotation methodology have been a catalyst for Reading Comprehension (RC) datasets and models. One recent trend to challenge current RC models is to involve a model in the annotation process: humans create questions adversarially, such that the model fails to answer them correctly. In this work we investigate this annotation methodology and apply it in three different settings, collecting a total of 36,000 samples with progressively stronger models in the annotation loop. This allows us to explore questions such as the reproducibility of the adversarial effect, transfer from data collected with varying model-in-the-loop strengths, and generalisation to data collected without a model. We find that training on adversarially collected samples leads to strong generalisation to non-adversarially collected datasets, yet with progressive performance deterioration with increasingly stronger models-in-the-loop. Furthermore, we find that stronger models can still learn from datasets collected with substantially weaker models-in-the-loop. When trained on data collected with a BiDAF model in the loop, RoBERTa achieves 39.9F1 on questions that it cannot answer when trained on SQuAD - only marginally lower than when trained on data collected using RoBERTa itself (41.0F1).