论文标题

张量类别和方案的纤维产品的本地化

Localizations of tensor categories and fiber products of schemes

论文作者

Brandenburg, Martin

论文摘要

我们证明,Quasi-Coherent模块的张量类别$ \ MATHSF {QCOH}(X \ TIMES_S Y)$在准连续性准分离方案的纤维产品上是$ \ Mathsf {qCoh}(x)$和$ \ m nathssf(y Mathsf)的bicate-parkorical Puskout $ \ mathsf {qCoh}(s)$在$ 2 $ - 共完成线性张量类别的类别中。特别是,$ \ mathsf {qcoh}(x \ times y)$是$ \ mathsf {qcoh}(x)$和$ \ m athsf {qcoh}(y)$的bicategorical coproduct。为此,我们介绍了偶像,可以将其视为非安装理想,并使用它们来研究共同张量类别的局部定位。

We prove that the tensor category of quasi-coherent modules $\mathsf{Qcoh}(X \times_S Y)$ on a fiber product of quasi-compact quasi-separated schemes is the bicategorical pushout of $\mathsf{Qcoh}(X)$ and $\mathsf{Qcoh}(Y)$ over $\mathsf{Qcoh}(S)$ in the $2$-category of cocomplete linear tensor categories. In particular, $\mathsf{Qcoh}(X \times Y)$ is the bicategorical coproduct of $\mathsf{Qcoh}(X)$ and $\mathsf{Qcoh}(Y)$. For this we introduce idals, which can be seen as non-embedded ideals, and use them to study localizations of cocomplete tensor categories in general.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源