论文标题

同时通过深度学习在多视图信息中留下心房解剖和疤痕分割,并注意

Simultaneous Left Atrium Anatomy and Scar Segmentations via Deep Learning in Multiview Information with Attention

论文作者

Yang, Guang, Chen, Jun, Gao, Zhifan, Li, Shuo, Ni, Hao, Angelini, Elsa, Wong, Tom, Mohiaddin, Raad, Nyktari, Eva, Wage, Ricardo, Xu, Lei, Zhang, Yanping, Du, Xiuquan, Zhang, Heye, Firmin, David, Keegan, Jennifer

论文摘要

心房颤动(AF)患者的左心疤痕的三维晚期gadolium增强(LGE)心脏MR(CMR)最近已成为一种有前途的技术来分层患者,以指导消融疗法并预测治疗成功。这需要对高强度疤痕组织进行分割,还需要对左心房(LA)解剖结构进行分割,后者通常是从单独的鲜血收购中得出的。从单个3D LGE CMR获取中自动执行这两种细分,将消除对额外采集的需求,并避免随后的注册问题。在本文中,我们提出了一种基于多视图(MVTT)递归注意模型的联合分割方法,直接在3D LGE CMR图像上工作,以分割LA(和近端肺静脉),并在同一数据集中描述疤痕。使用我们的MVTT递归注意模型,LA解剖结构和疤痕都可以准确分割(LA解剖结构的平均骰子得分为93%,疤痕分段为87%)和有效的(约0.27秒钟,可以同时从3D LGE CMR数据集与60-68 2d Slices分割LA解剖学和scars segress segment and LA解剖学和scars。与常规的无监督学习和其他基于深度学习的方法相比,提出的MVTT模型取得了出色的结果,从而导致自动生成患者特异性的解剖模型,并与AF中患者的疤痕分割结合在一起。

Three-dimensional late gadolinium enhanced (LGE) cardiac MR (CMR) of left atrial scar in patients with atrial fibrillation (AF) has recently emerged as a promising technique to stratify patients, to guide ablation therapy and to predict treatment success. This requires a segmentation of the high intensity scar tissue and also a segmentation of the left atrium (LA) anatomy, the latter usually being derived from a separate bright-blood acquisition. Performing both segmentations automatically from a single 3D LGE CMR acquisition would eliminate the need for an additional acquisition and avoid subsequent registration issues. In this paper, we propose a joint segmentation method based on multiview two-task (MVTT) recursive attention model working directly on 3D LGE CMR images to segment the LA (and proximal pulmonary veins) and to delineate the scar on the same dataset. Using our MVTT recursive attention model, both the LA anatomy and scar can be segmented accurately (mean Dice score of 93% for the LA anatomy and 87% for the scar segmentations) and efficiently (~0.27 seconds to simultaneously segment the LA anatomy and scars directly from the 3D LGE CMR dataset with 60-68 2D slices). Compared to conventional unsupervised learning and other state-of-the-art deep learning based methods, the proposed MVTT model achieved excellent results, leading to an automatic generation of a patient-specific anatomical model combined with scar segmentation for patients in AF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源