论文标题

朝着无人机群控制的脑部计算机界面

Towards Brain-Computer Interfaces for Drone Swarm Control

论文作者

Jeong, Ji-Hoon, Lee, Dae-Hyeok, Ahn, Hyung-Ju, Lee, Seong-Whan

论文摘要

非侵入性脑部计算机界面(BCI)解码大脑信号以了解用户意图。随着对无人机控制需求的增加,基于BCI的无人机控制系统的最新进展已经开发出来。特别是,基于大脑信号的无人机群控制可能会提供各种行业,例如兵役或行业灾难。本文介绍了使用视觉图像范式的各种场景的脑群界面系统的原型。我们设计了可以在无人机群控制模拟器环境下获取大脑信号的实验环境。通过系统,我们就四种不同的情况收集了脑电图(EEG)信号。七个受试者参与了我们的实验,并使用基本的机器学习算法评估了分类性能。大平均分类精度高于机会水平的精度。因此,我们可以根据执行高级任务的EEG信号确认无人机群控制系统的可行性。

Noninvasive brain-computer interface (BCI) decodes brain signals to understand user intention. Recent advances have been developed for the BCI-based drone control system as the demand for drone control increases. Especially, drone swarm control based on brain signals could provide various industries such as military service or industry disaster. This paper presents a prototype of a brain swarm interface system for a variety of scenarios using a visual imagery paradigm. We designed the experimental environment that could acquire brain signals under a drone swarm control simulator environment. Through the system, we collected the electroencephalogram (EEG) signals with respect to four different scenarios. Seven subjects participated in our experiment and evaluated classification performances using the basic machine learning algorithm. The grand average classification accuracy is higher than the chance level accuracy. Hence, we could confirm the feasibility of the drone swarm control system based on EEG signals for performing high-level tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源