论文标题
枚举奇数高纤维曲线和$ \ mathbb {p}^1 $上的Abelian表面
Enumerating odd-degree hyperelliptic curves and abelian surfaces over $\mathbb{P}^1$
论文作者
论文摘要
给定数量理论的渐近计数,Venkatesh的问题询问较低术语的拓扑性质是什么。我们考虑了有限领域的代数堆栈的惯性堆栈的算术方面,以部分回答这个问题。随后,我们在$ \ mathbb {f} _q(t)$上以有限的判别高度订购的$ \ mathbb {f} _q(t)$上获得了新的尖锐枚举。
Given asymptotic counts in number theory, a question of Venkatesh asks what is the topological nature of lower order terms. We consider the arithmetic aspect of the inertia stack of an algebraic stack over finite fields to partially answer this question. Subsequently, we acquire new sharp enumerations on quasi-admissible odd-degree hyperelliptic curves over $\mathbb{F}_q(t)$ ordered by bounded discriminant height.