论文标题

半活性$ \ MATHCAL {H} _ {\ infty} $通过自适应插值进行抑制优化

Semi-active $\mathcal{H}_{\infty}$ damping optimization by adaptive interpolation

论文作者

Tomljanović, Zoran, Voigt, Matthias

论文摘要

在这项工作中,我们考虑了具有固定阻尼器位置的机械系统的半活动阻尼优化的问题。我们的目标是计算与$ \ MATHCAL {H} _ \ infty $ - 从外源输入到性能输出的转移函数的局部最佳阻尼。我们利用一种新的贪婪方法来计算基于合理插值的传输函数的$ \ Mathcal {h} _ \ infty $ norm。在本文中,该方法适用于参数依赖性传输函数。插值会导致参数减少阶模型,可以更有效地优化。然后,在优化器上,我们提取新的插值点以完善降级模型并获得更新的优化器。在我们的数值示例中,我们表明这种方法通常会快速收敛,因此可以高度加速优化过程。这项工作的另一个贡献是选择最初的插值点的启发式方法。

In this work we consider the problem of semi-active damping optimization of mechanical systems with fixed damper positions. Our goal is to compute a damping that is locally optimal with respect to the $\mathcal{H}_\infty$-norm of the transfer function from the exogenous inputs to the performance outputs. We make use of a new greedy method for computing the $\mathcal{H}_\infty$-norm of a transfer function based on rational interpolation. In this paper, this approach is adapted to parameter-dependent transfer functions. The interpolation leads to parametric reduced-order models that can be optimized more efficiently. At the optimizers we then take new interpolation points to refine the reduced-order model and to obtain updated optimizers. In our numerical examples we show that this approach normally converges fast and thus can highly accelerate the optimization procedure. Another contribution of this work are heuristics for choosing initial interpolation points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源