论文标题

基于PIX2PIX的污渍到污渍翻译:在组织病理学图像分析中鲁棒染色标准化的解决方案

Pix2Pix-based Stain-to-Stain Translation: A Solution for Robust Stain Normalization in Histopathology Images Analysis

论文作者

Salehi, Pegah, Chalechale, Abdolah

论文摘要

癌症的诊断主要是通过对病理学家的视觉分析进行的,通过检查组织切片的形态和细胞的空间排列。如果标本的显微镜图像未染色,它将看起来无色和纹理。因此,需要化学染色以产生对比度并有助于识别特定的组织成分。在组织制备过程中,由于化学物质,扫描仪,切割厚度和实验室方案的差异,相似的组织通常在外观上差异很大。除了病理学家之间的解释性差异外,这种染色的多样性更多是设计自动分析的健壮和灵活系统的主要挑战之一。为了解决染色颜色变化,已经提出了几种标准化染色的方法。在我们提出的方法中,使用染色到染色的方法(STST)方法来染色苏木精和曙红(H&E)染色的组织病理学图像,该图像不仅学习了特定的颜色分布,而且还学会了相应的组织病理学模式。我们基于PIX2PIX框架进行翻译过程,该框架使用条件发生器对抗网络(CGAN)。我们的方法在数学上还是在实验上针对艺术方法的状态表现出了出色的结果。我们已公开提供源代码。

The diagnosis of cancer is mainly performed by visual analysis of the pathologists, through examining the morphology of the tissue slices and the spatial arrangement of the cells. If the microscopic image of a specimen is not stained, it will look colorless and textured. Therefore, chemical staining is required to create contrast and help identify specific tissue components. During tissue preparation due to differences in chemicals, scanners, cutting thicknesses, and laboratory protocols, similar tissues are usually varied significantly in appearance. This diversity in staining, in addition to Interpretive disparity among pathologists more is one of the main challenges in designing robust and flexible systems for automated analysis. To address the staining color variations, several methods for normalizing stain have been proposed. In our proposed method, a Stain-to-Stain Translation (STST) approach is used to stain normalization for Hematoxylin and Eosin (H&E) stained histopathology images, which learns not only the specific color distribution but also the preserves corresponding histopathological pattern. We perform the process of translation based on the pix2pix framework, which uses the conditional generator adversarial networks (cGANs). Our approach showed excellent results, both mathematically and experimentally against the state of the art methods. We have made the source code publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源