论文标题
关于求解线性系统的预处理AOR方法
On preconditioned AOR method for solving linear systems
论文作者
论文摘要
在本文中,我们研究了解决线性系统的预处理AOR方法。我们研究了两个通用的预处理,并提出了一些下三角,上三角和组合预处理。对于$ a $,是l-matrix,非词性M-matrix,不可约L-matrix和不可减少的非词m-matrix,分别介绍了四种类型的比较定理。它们包含一般比较结果,严格的比较结果和两个Stein-Rosenberg类型的比较结果。我们的定理包括,比几乎所有已知的相应结果都更好。
In this paper, we investigate the preconditioned AOR method for solving linear systems. We study two general preconditioners and propose some lower triangular, upper triangular and combination preconditioners. For $A$ being an L-matrix, a nonsingular M-matrix, an irreducible L-matrix and an irreducible nonsingular M-matrix, four types of comparison theorems are presented, respectively. They contain a general comparison result, a strict comparison result and two Stein-Rosenberg type comparison results. Our theorems include and are better than almost all known corresponding results.