论文标题

将接口固定在均值为零的随机介质中

Pinning of interfaces in a random medium with zero mean

论文作者

Dondl, Patrick, Jesenko, Martin, Scheutzow, Michael

论文摘要

我们考虑一个离散和连续模型,用于在时间独立的随机介质中传播曲率敏感界面。在这两种情况下,我们都认为培养基都包含对界面传播抑制性或加速力的传播的障碍。我们表明,即使施加了较小的恒定外部驱动力,界面仍保持界限。当仅存在抑制性障碍时,已经知道这种现象。在这项工作中,我们将此结果扩展到例如随机零均值强迫的随机介质。

We consider a discrete and a continuum model for the propagation of a curvature sensitive interface in a time independent random medium. In both cases we suppose that the medium contains obstacles that act on the propagation of the interface with an inhibitory or an acceleratory force. We show that the interface remains bounded for all times even when a small constant external driving force is applied. This phenomenon has already been known when only inhibitory obstacles are present. In this work we extend this result to the case of, for example, a random medium of random zero mean forcing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源