论文标题
WISM:使用Dubins车辆评估曲率受限旅行的窗户替代模型
WiSM: Windowing Surrogate Model for Evaluation of Curvature-Constrained Tours with Dubins vehicle
论文作者
论文摘要
Dubins Tours代表了DUBINS旅行推销员问题(DTSP)的解决方案,该解决方案是优化路由问题的变体,可以确定曲率约束的最短路径来访问一组位置,因此该路径对于Dubins车辆来说是可行的,Dubins车辆仅移动向前移动并且距离有限的转动半径有限。 DTSP结合了NP-HARD组合优化,以确定对位置的访问的最佳序列,例如常规TSP中,以及在位置的标题角度的连续优化,其中最佳标题值取决于访问的序列,而vice vice ViseA则取决于访问的顺序。我们通过通过提议的窗口替代模型(WISM)快速评估访问序列来解决计算具有挑战性的DTSP,该模型(WISM)估计了最佳的Dubins路径的长度,连接了Dubins Tour中的一系列位置。该估计是通过使用滑动窗口技术和一个已计算的结果的缓存来概括的,该回归模型使用接近最佳解决方案训练了小型Dubins Tours的最佳解决方案。报告的结果支持了所提出的WISM可以使相对简单的进化算法快速收敛到DTSP的高质量溶液。我们表明,随着位置数量的越来越多,我们的算法比例明显优于其他最先进的DTSP求解器。
Dubins tours represent a solution of the Dubins Traveling Salesman Problem (DTSP) that is a variant of the optimization routing problem to determine a curvature-constrained shortest path to visit a set of locations such that the path is feasible for Dubins vehicle, which moves only forward and has a limited turning radius. The DTSP combines the NP-hard combinatorial optimization to determine the optimal sequence of visits to the locations, as in the regular TSP, with the continuous optimization of the heading angles at the locations, where the optimal heading values depend on the sequence of visits and vice versa. We address the computationally challenging DTSP by fast evaluation of the sequence of visits by the proposed Windowing Surrogate Model (WiSM) which estimates the length of the optimal Dubins path connecting a sequence of locations in a Dubins tour. The estimation is sped up by a regression model trained using close to optimum solutions of small Dubins tours that are generalized for large-scale instances of the addressed DTSP utilizing the sliding window technique and a cache for already computed results. The reported results support that the proposed WiSM enables a fast convergence of a relatively simple evolutionary algorithm to high-quality solutions of the DTSP. We show that with an increasing number of locations, our algorithm scales significantly better than other state-of-the-art DTSP solvers.