论文标题

多媒体洗牌模型中的私人总和

Private Summation in the Multi-Message Shuffle Model

论文作者

Balle, Borja, Bell, James, Gascon, Adria, Nissim, Kobbi

论文摘要

差异隐私的洗牌模型(Erlingsson等人2019; Cheu等人2019年)及其近距离的相对编码散装式分析(Bittau等人SOSP 2017)在众所周知的本地模型和中心模型之间提供了肥沃的中间地面。与本地模型类似,Shuffle模型假设从用户接收私有化消息的不信任数据收集器,但是在这种情况下,使用安全的调整器将消息从用户传输到收集器,以隐藏哪些消息来自哪个用户。洗牌模型的一个有趣功能是,增加每个用户发送的消息的数量可以导致协议,其精度可与中央模型中可用的消息相当。特别是,对于私下计算$ n $不同用户持有的$ n $有限的真实价值和的问题,Cheu等人。表明每个用户的$ o(\ sqrt {n})$消息足以实现$ o(1)$错误(中央模型中的最佳速率),而Balle等人。 (Crypto 2019)最近表明,每个用户的单个消息导致$θ(n^{1/3})$ MSE(均方误差),这是在本地和中央模型中可实现的速率。 本文介绍了两个新的协议,以提高准确性和交流权衡,以求和。我们的第一个贡献是基于Balle等人协议的递归结构。上面提到的,提供$ \ mathrm {poly}(\ log \ log \ log n)$ error $ o(\ log \ log \ log n)$ messages每个用户。第二个贡献是根据$ O(1)$错误的协议,每个用户的$ O(1)$消息基于Ishai等人从安全求和到改组的简化分析。 (FOCS 2006)(原始减少所需的$ O(\ log n)$每个用户的消息)。

The shuffle model of differential privacy (Erlingsson et al. SODA 2019; Cheu et al. EUROCRYPT 2019) and its close relative encode-shuffle-analyze (Bittau et al. SOSP 2017) provide a fertile middle ground between the well-known local and central models. Similarly to the local model, the shuffle model assumes an untrusted data collector who receives privatized messages from users, but in this case a secure shuffler is used to transmit messages from users to the collector in a way that hides which messages came from which user. An interesting feature of the shuffle model is that increasing the amount of messages sent by each user can lead to protocols with accuracies comparable to the ones achievable in the central model. In particular, for the problem of privately computing the sum of $n$ bounded real values held by $n$ different users, Cheu et al. showed that $O(\sqrt{n})$ messages per user suffice to achieve $O(1)$ error (the optimal rate in the central model), while Balle et al. (CRYPTO 2019) recently showed that a single message per user leads to $Θ(n^{1/3})$ MSE (mean squared error), a rate strictly in-between what is achievable in the local and central models. This paper introduces two new protocols for summation in the shuffle model with improved accuracy and communication trade-offs. Our first contribution is a recursive construction based on the protocol from Balle et al. mentioned above, providing $\mathrm{poly}(\log \log n)$ error with $O(\log \log n)$ messages per user. The second contribution is a protocol with $O(1)$ error and $O(1)$ messages per user based on a novel analysis of the reduction from secure summation to shuffling introduced by Ishai et al. (FOCS 2006) (the original reduction required $O(\log n)$ messages per user).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源