论文标题
使用自体属性属性模型的采样网络数据
Using Sampled Network Data With The Autologistic Actor Attribute Model
论文作者
论文摘要
社会科学研究越来越多地从统计方法中受益,以理解社会生活的结构化本质,包括社交网络数据。但是,由于对现实数据收集条件(包括采样或缺少网络数据)的推论有效性的了解太少了,因此在大规模社区研究中的应用在大规模社区研究中的应用。自体actor属性模型(ALAAM)是一个基于社交网络的良好指数随机图模型(ERGM)的统计模型。 ALAAM可以被视为一种社会影响模型,可以根据演员的网络联系,其网络合作伙伴的同时结果以及演员及其网络合作伙伴的属性来预测个人级别的结果。特别是,可以使用ALAAM来测量传染效应,即通过社交网络联系连接到两者都具有相同属性的两个参与者的倾向。我们研究了使用简单的随机样本和网络数据的雪球样本对ALAAM参数推断的影响,并发现即使缺少丢失的节点分数,参数推理仍然可以很好地工作。但是,取网络样本并估算雪球采样结构的条件是更安全的。
Social science research increasingly benefits from statistical methods for understanding the structured nature of social life, including for social network data. However, the application of statistical network models within large-scale community research is hindered by too little understanding of the validity of their inferences under realistic data collection conditions, including sampled or missing network data. The autologistic actor attribute model (ALAAM) is a statistical model based on the well-established exponential random graph model (ERGM) for social networks. ALAAMs can be regarded as a social influence model, predicting an individual-level outcome based on the actor's network ties, concurrent outcomes of his/her network partners, and attributes of the actor and his/her network partners. In particular, an ALAAM can be used to measure contagion effects, that is, the propensity of two actors connected by a social network tie to both have the same value of an attribute. We investigate the effect of using simple random samples and snowball samples of network data on ALAAM parameter inference, and find that parameter inference can still work well even with a nontrivial fraction of missing nodes. However it is safer to take a snowball sample of the network and estimate conditional on the snowball sampling structure.