论文标题

支持DNN安全分析并通过基于热图的无监督学习进行重新训练

Supporting DNN Safety Analysis and Retraining through Heatmap-based Unsupervised Learning

论文作者

Fahmy, Hazem, Pastore, Fabrizio, Bagherzadeh, Mojtaba, Briand, Lionel

论文摘要

深度神经网络(DNN)在安全性关键系统中越来越重要,例如在其感知层中以分析图像。不幸的是,缺乏确保基于DNN的组件的功能安全性的方法。我们观察到有关安全至关重要系统中DNN的现有实践的三个主要挑战:(1)测试集中代表性不足的情况可能会导致严重的安全违规风险,但是,可能仍然没有注意到; (2)表征这种高风险场景对于安全分析至关重要; (3)当难以确定违规原因时,对解决这些风险的重新培训DNN应对这些风险。为了在DNN分析图像的背景下解决这些问题,我们提出了HUDD,这种方法自动支持识别DNN错误的根本原因。 HUDD通过将聚类算法应用于热图来捕获每个DNN神经元在DNN结果上的相关性来识别根本原因。同样,HUDD重新培训DNN具有根据与已识别图像簇的相关性自动选择的图像。我们用来自汽车域的DNN评估了HUDD。 HUDD能够识别DNN错误的所有不同根本原因,从而支持安全分析。同样,与现有方法相比,我们的再培训方法已显示出比现有方法更有效地提高DNN的准确性。

Deep neural networks (DNNs) are increasingly important in safety-critical systems, for example in their perception layer to analyze images. Unfortunately, there is a lack of methods to ensure the functional safety of DNN-based components. We observe three major challenges with existing practices regarding DNNs in safety-critical systems: (1) scenarios that are underrepresented in the test set may lead to serious safety violation risks, but may, however, remain unnoticed; (2) characterizing such high-risk scenarios is critical for safety analysis; (3) retraining DNNs to address these risks is poorly supported when causes of violations are difficult to determine. To address these problems in the context of DNNs analyzing images, we propose HUDD, an approach that automatically supports the identification of root causes for DNN errors. HUDD identifies root causes by applying a clustering algorithm to heatmaps capturing the relevance of every DNN neuron on the DNN outcome. Also, HUDD retrains DNNs with images that are automatically selected based on their relatedness to the identified image clusters. We evaluated HUDD with DNNs from the automotive domain. HUDD was able to identify all the distinct root causes of DNN errors, thus supporting safety analysis. Also, our retraining approach has shown to be more effective at improving DNN accuracy than existing approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源