论文标题
弯曲的几何形状:弯曲弯曲的奇异线和缺陷
Geometry of Bend: Singular Lines and Defects in Twist-Bend Nematics
论文作者
论文摘要
我们描述了弯曲弯曲列液晶晶体的几何形状,其基本变性为$β$线。这些代表了新的类似线的拓扑缺陷。我们使用它们来构建和表征新的结构,包括晶界和类似近距离的缺陷,天空和打结的梅隆。我们分析了它们的局部几何形状和全球结构,表明它们与任何表面的交点是天空数的两倍。最后,我们证明了如何创建任意结和链接并用梅隆(Merons)来描述它们,从而为天空的分数提供了新的几何观点。
We describe the geometry of bend distortions in twist-bend nematic liquid crystals in terms of their fundamental degeneracies, which we call $β$ lines. These represent a new class of line-like topological defect. We use them to construct and characterise novel structures, including grain boundary and focal conic smectic-like defects, Skyrmions, and knotted merons. We analyse their local geometry and global structure, showing that their intersection with any surface is twice the Skyrmion number. Finally, we demonstrate how arbitrary knots and links can be created and describe them in terms of merons, giving a new geometric perspective on the fractionalisation of Skyrmions.