论文标题

爱因斯坦 - 麦克斯韦 - 斯卡尔黑洞:热,寒冷和秃头

Einstein-Maxwell-scalar black holes: the hot, the cold and the bald

论文作者

Blázquez-Salcedo, Jose Luis, Herdeiro, Carlos A. R., Kunz, Jutta, Pombo, Alexandre M., Radu, Eugen

论文摘要

带电黑洞(BHS)自发标量的现象最近激发了对各种爱因斯坦 - 马克斯韦 - 斯卡尔模型的研究。在这些模型中,可以根据标量场和麦克斯韦不变的非最小耦合函数$ f(ϕ)$的非最小耦合函数$ f(ϕ)$。在这里,我们考虑了(秃头)电动员Reissner-Nordström(RN)BH和新的标量BHS共存的类别,而前者永远不会对标量扰动不稳定。特别是,我们在此子类中检查了模型,具有四分之一的耦合函数:$ f(φ)= 1+αφ^4 $。标量BHS存在的域,用于固定$α$,由两个分支组成。第一个分支(冷标量BHS)连续连接到极端RN BH。第二个分支(热标量的BHS)以电荷与质量比的最小值连接到第一个分支,其中包括过多的BHS。然后,我们评估标识溶液的扰动稳定性,重点是球形扰动。一方面,通过明确计算生长模式,表现出冷标量的BHS是不稳定的。不稳定在第一个分支的两个端点都淬灭。另一方面,通过使用S形式方法显示,热标量的BHS被证明是稳定的。因此,在球形部门中,该模型具有两个稳定的BH局部接地状态(RN和热标量)。我们指出,该模型中BHS的分支结构与BHS中的一个在五个维真空吸引力中与[Myer-Perry BHS,脂肪环,薄环]扮演[RN,冷标量表,热标量表] BHS的作用。

The phenomenon of spontaneous scalarisation of charged black holes (BHs) has recently motivated studies of various Einstein-Maxwell-scalar models. Within these models, different classes of BH solutions are possible, depending on the non-minimal coupling function $f(ϕ)$, between the scalar field and the Maxwell invariant. Here we consider the class wherein both the (bald) electrovacuum Reissner-Nordström (RN) BH and new scalarised BHs co-exist, and the former are never unstable against scalar perturbations. In particular we examine the model, within this subclass, with a quartic coupling function: $f(Φ) = 1+αΦ^4$. The domain of existence of the scalarised BHs, for fixed $α$, is composed of two branches. The first branch (cold scalarised BHs) is continuously connected to the extremal RN BH. The second branch (hot scalarised BHs) connects to the first one at the minimum value of the charge to mass ratio and it includes overcharged BHs. We then assess the perturbative stability of the scalarised solutions, focusing on spherical perturbations. On the one hand, cold scalarised BHs are shown to be unstable by explicitly computing growing modes. The instability is quenched at both endpoints of the first branch. On the other hand, hot scalarised BHs are shown to be stable by using the S-deformation method. Thus, in the spherical sector this model possesses two stable BH local ground states (RN and hot scalarised). We point out that the branch structure of BHs in this model parallels the one of BHs in five dimensional vacuum gravity, with [Myer-Perry BHs, fat rings, thin rings] playing the role of [RN, cold scalarised, hot scalarised] BHs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源