论文标题
可变恒星分类的可扩展端到端的复发网络
Scalable End-to-end Recurrent Neural Network for Variable star classification
论文作者
论文摘要
在过去的十年中,已经付出了巨大的努力来使用机器学习技术对可变星进行自动分类。传统上,光曲线表示为描述符或用作许多算法输入的特征的向量。某些功能在计算上很昂贵,无法快速更新,因此无法应用大型数据集(例如LSST)。以前的工作已经为光曲线开发了替代无监督的特征提取算法,但是这样做的成本仍然很高。在这项工作中,我们提出了一种端到端算法,该算法会自动学习光曲线的表示,该光曲线允许精确的自动分类。我们研究了一系列基于复发神经网络的深度学习体系结构,并在自动分类方案中测试它们。我们的方法使用最小的数据预处理,可以以低计算成本来进行新的观察和光曲线,并可以扩展到大量数据集。我们将每个光曲线转换为一个输入矩阵表示,其元素是时间和幅度的差异,并且输出是分类概率。我们在三个调查中测试我们的方法:Ogle-III,Gaia和Wise。我们在主要类中获得约95美元的$ 95 \%$,在大多数子类中获得$ 75 \%$。我们将结果与随机森林分类器进行比较,并获得竞争精度,同时更快,可扩展。分析表明,我们方法的计算复杂性随光曲线大小而线性成长,而传统方法的成本则增长为$ n \ log {(n)} $。
During the last decade, considerable effort has been made to perform automatic classification of variable stars using machine learning techniques. Traditionally, light curves are represented as a vector of descriptors or features used as input for many algorithms. Some features are computationally expensive, cannot be updated quickly and hence for large datasets such as the LSST cannot be applied. Previous work has been done to develop alternative unsupervised feature extraction algorithms for light curves, but the cost of doing so still remains high. In this work, we propose an end-to-end algorithm that automatically learns the representation of light curves that allows an accurate automatic classification. We study a series of deep learning architectures based on Recurrent Neural Networks and test them in automated classification scenarios. Our method uses minimal data preprocessing, can be updated with a low computational cost for new observations and light curves, and can scale up to massive datasets. We transform each light curve into an input matrix representation whose elements are the differences in time and magnitude, and the outputs are classification probabilities. We test our method in three surveys: OGLE-III, Gaia and WISE. We obtain accuracies of about $95\%$ in the main classes and $75\%$ in the majority of subclasses. We compare our results with the Random Forest classifier and obtain competitive accuracies while being faster and scalable. The analysis shows that the computational complexity of our approach grows up linearly with the light curve size, while the traditional approach cost grows as $N\log{(N)}$.