论文标题

比例积分衍生控制器辅助加固学习,以通过自动水下车辆跟随路径

Proportional integral derivative controller assisted reinforcement learning for path following by autonomous underwater vehicles

论文作者

Havenstrøm, Simen Theie, Sterud, Camilla, Rasheed, Adil, San, Omer

论文摘要

控制理论为工程师提供了多种设计控制器的工具,以操纵动力学系统的闭环行为和稳定性。这些方法在很大程度上依赖于有关管理物理系统的数学模型的见解。但是,如果系统高度复杂,则产生系统的可靠数学模型可能是不可行的。没有模型,大多数理论工具可以制定控制法律。在这些设置中,机器学习控制器变得有吸引力:可以学习并适应复杂系统的控制器,制定工程师不能的控制法律。本文着重于在实际应用中利用机器学习控制器,特别是在运动控制系统中使用深度强化学习,用于具有六个自养子的自主水下车辆。考虑了两种方法:端到端的学习,其中完全独自一人将车辆探索以探索其寻求最佳策略的解决方案空间,而PID辅助学习(DRL Controller)基本上分为三个单独的部分,每个部分都控制着自己的执行器。

Control theory provides engineers with a multitude of tools to design controllers that manipulate the closed-loop behavior and stability of dynamical systems. These methods rely heavily on insights about the mathematical model governing the physical system. However, if a system is highly complex, it might be infeasible to produce a reliable mathematical model of the system. Without a model most of the theoretical tools to develop control laws break down. In these settings, machine learning controllers become attractive: Controllers that can learn and adapt to complex systems, developing control laws where the engineer cannot. This article focuses on utilizing machine learning controllers in practical applications, specifically using deep reinforcement learning in motion control systems for an autonomous underwater vehicle with six degrees-of-freedom. Two methods are considered: end-to-end learning, where the vehicle is left entirely alone to explore the solution space in its search for an optimal policy, and PID assisted learning, where the DRL controller is essentially split into three separate parts, each controlling its own actuator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源