论文标题

SuperDTI:超深学习的超快扩散张量成像和纤维拖拉

SuperDTI: Ultrafast diffusion tensor imaging and fiber tractography with deep learning

论文作者

Li, Hongyu, Liang, Zifei, Zhang, Chaoyi, Liu, Ruiying, Li, Jing, Zhang, Weihong, Liang, Dong, Shen, Bowen, Zhang, Xiaoliang, Ge, Yulin, Zhang, Jiangyang, Ying, Leslie

论文摘要

目的:提出一个基于深度学习的重建框架,用于超快和稳健的扩散张量成像和纤维拖拉术。方法:我们建议SuperDTI学习扩散加权图像(DWI)与相应张量的定量图以及光纤拖拉术之间的非线性关系。 Super DTI绕过张量拟合程序,众所周知,该程序非常容易受到DWIS噪声和运动的影响。使用人类Connectome项目和缺血性中风患者的数据集对网络进行训练和测试。将SuperDTI与用于扩散图重建和光纤跟踪的最新方法进行了比较。结果:使用训练和测试数据既来自相同的协议又使用扫描仪,SuperDTI被证明可以产生分数各向异性和平均扩散图以及纤维拖拉图,以及纤维拖拉术,从六个原始DWIS产生。该方法在白质和灰质结构中所有感兴趣的地区的定量误差少于5%。我们还证明了训练有素的神经网络对测试数据中的噪声和运动具有鲁棒性,并且使用健康志愿者数据训练的网络可以直接应用于中风患者数据,而不会损害病变可检测性。结论:本文证明了超快速扩散张量成像和纤维拖拉术的可行性,使用深度学习直接直接六个DWI,绕开张量拟合。扫描时间的大幅度减少可能会使DTI纳入许多潜在应用的临床常规。

Purpose: To propose a deep learning-based reconstruction framework for ultrafast and robust diffusion tensor imaging and fiber tractography. Methods: We propose SuperDTI to learn the nonlinear relationship between diffusion-weighted images (DWIs) and the corresponding tensor-derived quantitative maps as well as the fiber tractography. Super DTI bypasses the tensor fitting procedure, which is well known to be highly susceptible to noise and motion in DWIs. The network is trained and tested using datasets from Human Connectome Project and patients with ischemic stroke. SuperDTI is compared against the state-of-the-art methods for diffusion map reconstruction and fiber tracking. Results: Using training and testing data both from the same protocol and scanner, SuperDTI is shown to generate fractional anisotropy and mean diffusivity maps, as well as fiber tractography, from as few as six raw DWIs. The method achieves a quantification error of less than 5% in all regions of interest in white matter and gray matter structures. We also demonstrate that the trained neural network is robust to noise and motion in the testing data, and the network trained using healthy volunteer data can be directly applied to stroke patient data without compromising the lesion detectability. Conclusion: This paper demonstrates the feasibility of superfast diffusion tensor imaging and fiber tractography using deep learning with as few as six DWIs directly, bypassing tensor fitting. Such a significant reduction in scan time may allow the inclusion of DTI into the clinical routine for many potential applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源