论文标题
使用局部可能性估计和SAR翻译的Matérn建模空间数据
Modeling spatial data using local likelihood estimation and a Matérn to SAR translation
论文作者
论文摘要
使用非平稳协方差结构进行建模数据对于表示地球物理和其他环境空间过程中的异质性很重要。在这项工作中,我们研究了一种对非平稳协方差建模的多阶段方法,该方法对于大型数据集有效。首先,我们使用本地移动窗口中的可能性估计来推断空间变化的协方差参数。然后可以将协方差参数的这些表面编码为全局协方差模型,该模型指定完整空间域的二阶结构。由此产生的全局模型可以进行有效的仿真和预测。我们研究了与高斯马尔可夫随机场(GMRF)方法相关的非平稳空间自回旋(SAR)模型,该方法可以插入本地估计值,并且对于大型数据集而实用。此外,当有重复字段可用并利用小型本地窗口以减少计算时,我们还会使用仿真研究来确定本地Matérn参数估计的准确性。这种多阶段建模方法是在非平稳气候模型输出数据集上实现的,目的是使用高斯进程模拟数值模型集合中的变化。
Modeling data with non-stationary covariance structure is important to represent heterogeneity in geophysical and other environmental spatial processes. In this work, we investigate a multistage approach to modeling non-stationary covariances that is efficient for large data sets. First, we use likelihood estimation in local, moving windows to infer spatially varying covariance parameters. These surfaces of covariance parameters can then be encoded into a global covariance model specifying the second-order structure for the complete spatial domain. The resulting global model allows for efficient simulation and prediction. We investigate the non-stationary spatial autoregressive (SAR) model related to Gaussian Markov random field (GMRF) methods, which is amenable to plug in local estimates and practical for large data sets. In addition we use a simulation study to establish the accuracy of local Matérn parameter estimation as a reliable technique when replicate fields are available and small local windows are exploited to reduce computation. This multistage modeling approach is implemented on a non-stationary climate model output data set with the goal of emulating the variation in the numerical model ensemble using a Gaussian process.