论文标题

球形表面上偶极斑块颗粒的拓扑缺陷

Topological defects of dipole patchy particles on a spherical surface

论文作者

Lieu, Uyen Tu, Yoshinaga, Natsuhiko

论文摘要

我们研究了布朗动力学模拟局限于球形表面的偶极样片段粒子的组装。球形粒子的表面特性由球形谐波$ y_ {10} $描述,粒子的方向定义为单轴轴。在平坦的空间上,我们观察到具有列表的无缺陷方晶格。在球形表面上,由于拓扑约束而出现缺陷。至于导演场,观察到四个绕组数字$+1/2 $的缺陷,满足了Euler的特征。我们发现,在一个大圆圈附近的四个缺陷的许多配置。关于平方晶格的位置顺序,八个晶界疤痕与球体大小线性增殖。八个晶界伤痕的位置和方向与四个$+1/2 $缺陷核密切相关。

We investigate the assembly of the dipole-like patchy particles confined to a spherical surface by Brownian dynamics simulations. The surface property of the spherical particle is described by the spherical harmonic $Y_{10}$, and the orientation of the particle is defined as the uniaxial axis. On a flat space, we observe a defect-free square lattice with nematic order. On a spherical surface, defects appear due to the topological constraint. As for the director field, four defects of winding number $+1/2$ are observed, satisfying the Euler characteristic. We have found many configurations of the four defects lying near a great circle. Regarding the positional order for the square lattice, eight grain boundary scars proliferate linearly with the sphere size. The positions and orientations of the eight grain boundary scars are strongly related to the four $+1/2$ defect cores.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源