论文标题

朝着快速稳态的视觉诱发电势(SSVEP)脑部计算机界面(BCI)

Towards a Fast Steady-State Visual Evoked Potentials (SSVEP) Brain-Computer Interface (BCI)

论文作者

Wai, Aung Aung Phyo, Zhang, Yangsong, Guo, Heng, Chi, Ying, Zhang, Lei, Hua, Xian-Sheng, Lee, Seong Whan, Guan, Cuntai

论文摘要

稳态视觉诱发电位(SSVEP)脑部计算机界面(BCI)提供了可靠的响应,从而导致高精度和信息吞吐量。但是,达到高精度通常需要一个相对较长的时间窗口或多个窗口。提出了各种方法通过特定于受试者的训练和校准来提高亚秒响应精度。通过乏味的校准和特定于主题的培训,可以改善性能;导致用户的不适。因此,我们通过合并空间过滤和时间对齐(CSTA)来提出一种无训练方法,以识别在亚秒响应时间中的SSVEP响应。 CSTA利用了稳态响应和具有互补融合的刺激模板之间的线性相关性和非线性相似性,以实现理想的性能改善。与使用两个SSVEP数据集的基于培训和无培训方法相比,我们在准确性和信息传输率(ITR)方面评估了CSTA的性能。我们观察到,CSTA的最大平均准确性为97.43 $ \ pm $ 2.26%和85.71 $ \ pm $ 13.41%,在离线分析中,分别在下一步响应时间中,四级和40级SSVEP数据集。在两个数据集上,CSTA的平均性能(P <0.001)明显高于无训练方法。与基于培训的方法相比,CSTA显示29.33 $ \ pm的平均准确性$ 19.65%,时间窗口的统计学上显着差异小于0.5 s。在较长的时间窗口中,CSTA表现出更好或可比性的性能,尽管统计学上的表现不如基于培训的方法明显好。我们表明,所提出的方法带来了与受试者无关的SSVEP分类的优势,而无需训练,同时在下秒响应时间内实现了高目标识别性能。

Steady-state visual evoked potentials (SSVEP) brain-computer interface (BCI) provides reliable responses leading to high accuracy and information throughput. But achieving high accuracy typically requires a relatively long time window of one second or more. Various methods were proposed to improve sub-second response accuracy through subject-specific training and calibration. Substantial performance improvements were achieved with tedious calibration and subject-specific training; resulting in the user's discomfort. So, we propose a training-free method by combining spatial-filtering and temporal alignment (CSTA) to recognize SSVEP responses in sub-second response time. CSTA exploits linear correlation and non-linear similarity between steady-state responses and stimulus templates with complementary fusion to achieve desirable performance improvements. We evaluated the performance of CSTA in terms of accuracy and Information Transfer Rate (ITR) in comparison with both training-based and training-free methods using two SSVEP data-sets. We observed that CSTA achieves the maximum mean accuracy of 97.43$\pm$2.26 % and 85.71$\pm$13.41 % with four-class and forty-class SSVEP data-sets respectively in sub-second response time in offline analysis. CSTA yields significantly higher mean performance (p<0.001) than the training-free method on both data-sets. Compared with training-based methods, CSTA shows 29.33$\pm$19.65 % higher mean accuracy with statistically significant differences in time window less than 0.5 s. In longer time windows, CSTA exhibits either better or comparable performance though not statistically significantly better than training-based methods. We show that the proposed method brings advantages of subject-independent SSVEP classification without requiring training while enabling high target recognition performance in sub-second response time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源