论文标题

学习有限的子集的$ l_p $

Learning bounded subsets of $L_p$

论文作者

Mendelson, Shahar

论文摘要

我们研究学习问题,其中基础类是$ l_p $的有限子集,而目标$ y $属于$ l_p $。以前,仅当$ p = \ infty $时,在此类界假设下才知道最小值样本复杂性估计值。我们提出了一个鲜明的样本复杂性估计,该估算值均适用于任何$ p> 4 $。它基于适合重尾问题的学习程序。

We study learning problems in which the underlying class is a bounded subset of $L_p$ and the target $Y$ belongs to $L_p$. Previously, minimax sample complexity estimates were known under such boundedness assumptions only when $p=\infty$. We present a sharp sample complexity estimate that holds for any $p > 4$. It is based on a learning procedure that is suited for heavy-tailed problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源