论文标题

机器学习技术以检测和表征惠斯勒无线电波

Machine Learning Techniques to Detect and Characterise Whistler Radio Waves

论文作者

Konan, Othniel J. E. Y., Mishra, Amit Kumar, Lotz, Stefan

论文摘要

闪电中风会产生强大的电磁脉冲,该脉冲通常会导致非常低的频率(VLF)波,以沿着地磁磁场线跨半球传播。 VLF天线接收器可用于检测这些闪电中风产生的惠斯勒波。接收到的惠斯勒波的特定时间/频率依赖性可以估计磁层等离子球区域中的电子密度。因此,吹口哨的识别和表征是实时监测等离子球并构建大量事件数据库的重要任务。检测惠斯勒的当前最新状态是Lichtenberger(2009)开发的自动惠斯勒检测方法(AWD)方法。此方法基于2维图的图像相关性,需要位于VLF接收器天线(例如,在南极洲)上的大量计算硬件。这项工作的目的是开发一个基于机器学习的模型,该模型能够自动检测VLF接收器提供的数据中的吹口哨。该方法是在VLF接收器生成的频谱数据数据上使用图像分类和本地化的组合来识别和本地化每个惠斯勒。手头的数据在Sanae和Marion的AWD确定了大约2300个事件,并将用作培训,验证和测试数据。已经提出了三种探测器设计。第一个使用类似方法的AWD,第二种是从频谱图中提取的感兴趣区域上使用图像分类的第二种方法,而最后一个使用Yolo,是对象检测中最新技术的当前状态。已经表明,这些探测器可以在Marion的数据集中实现误导和错误警报。

Lightning strokes create powerful electromagnetic pulses that routinely cause very low frequency (VLF) waves to propagate across hemispheres along geomagnetic field lines. VLF antenna receivers can be used to detect these whistler waves generated by these lightning strokes. The particular time/frequency dependence of the received whistler wave enables the estimation of electron density in the plasmasphere region of the magnetosphere. Therefore the identification and characterisation of whistlers are important tasks to monitor the plasmasphere in real-time and to build large databases of events to be used for statistical studies. The current state of the art in detecting whistler is the Automatic Whistler Detection (AWD) method developed by Lichtenberger (2009). This method is based on image correlation in 2 dimensions and requires significant computing hardware situated at the VLF receiver antennas (e.g. in Antarctica). The aim of this work is to develop a machine learning-based model capable of automatically detecting whistlers in the data provided by the VLF receivers. The approach is to use a combination of image classification and localisation on the spectrogram data generated by the VLF receivers to identify and localise each whistler. The data at hand has around 2300 events identified by AWD at SANAE and Marion and will be used as training, validation, and testing data. Three detector designs have been proposed. The first one using a similar method to AWD, the second using image classification on regions of interest extracted from a spectrogram, and the last one using YOLO, the current state of the art in object detection. It has been shown that these detectors can achieve a misdetection and false alarm of less than 15% on Marion's dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源