论文标题

带有整数加权条款的回归TSETLIN机器,用于紧凑的模式表示

A Regression Tsetlin Machine with Integer Weighted Clauses for Compact Pattern Representation

论文作者

Abeyrathna, K. Darshana, Granmo, Ole-Christoffer, Goodwin, Morten

论文摘要

回归TSETLIN机器(RTM)解决了缺乏阻碍最先进的非线性回归模型的能力。它通过在命题逻辑中使用连词子句来捕获数据中的基本非线性频繁模式。这些反过来,通过求和,将这些结合成连续的输出,类似于线性回归函数,但是,具有非线性组件和统一权重。尽管RTM以竞争精度解决了非线性回归问题,但输出的分辨率与所使用的条款数量成正比。这意味着计算成本随分辨率而增加。为了减少此问题,我们在这里介绍了整数加权RTM子句。我们的整数加权子句是多个子句的紧凑表示,捕获相同的子图案n重复子句的重复子句将变成一个整体权重n。这降低了计算成本n次,并通过更稀疏的表示来提高可解释性。我们进一步介绍了一种新颖的学习方案,使我们能够利用所谓的随机搜索在线上同时学习子句及其权重。我们使用六个人工数据集在经验上评估整数加权RTM的潜力。结果表明,与常规RTM相比,使用较少的计算资源,整数加权RTM能够以PAR或更高的准确性获取。我们进一步表明,整数权重比实价值提高了精度。

The Regression Tsetlin Machine (RTM) addresses the lack of interpretability impeding state-of-the-art nonlinear regression models. It does this by using conjunctive clauses in propositional logic to capture the underlying non-linear frequent patterns in the data. These, in turn, are combined into a continuous output through summation, akin to a linear regression function, however, with non-linear components and unity weights. Although the RTM has solved non-linear regression problems with competitive accuracy, the resolution of the output is proportional to the number of clauses employed. This means that computation cost increases with resolution. To reduce this problem, we here introduce integer weighted RTM clauses. Our integer weighted clause is a compact representation of multiple clauses that capture the same sub-pattern-N repeating clauses are turned into one, with an integer weight N. This reduces computation cost N times, and increases interpretability through a sparser representation. We further introduce a novel learning scheme that allows us to simultaneously learn both the clauses and their weights, taking advantage of so-called stochastic searching on the line. We evaluate the potential of the integer weighted RTM empirically using six artificial datasets. The results show that the integer weighted RTM is able to acquire on par or better accuracy using significantly less computational resources compared to regular RTMs. We further show that integer weights yield improved accuracy over real-valued ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源