论文标题

通过网络对齐在双网络中提取密集和连接的子图

Extracting Dense and Connected Subgraphs in Dual Networks by Network Alignment

论文作者

Guzzi, Pietro Hiram, Salerno, Emanuel, Tradigo, Giuseppe, Veltri, Pierangelo

论文摘要

目前,基于网络的方法对大型数据集进行建模和分析是一个不断发展的研究领域。例如,在生物学和医学中,网络用于模拟生物分子之间的相互作用以及患者之间的关系。同样,来自社交网络的数据可以通过使用图来琐碎地建模。最近,双重网络的使用引起了研究人员的关注。双网络模型使用一对图来建模一个场景,其中两个图通常未加权(代表节点之间物理关联的网络)之一,而另一个图表则是边缘加权的(代表节点之间概念关联的网络)。在本文中,我们关注的问题是找到具有概念网络中最大密度的最密度连接的子图(DC)的问题,该密度也与物理网络连接在一起。这个问题是相关的,但在计算上也很难,因此需要引入新算法。我们将问题形式化,然后将DC映射到图形对齐问题中。然后,我们提出了一个可能的解决方案。还提出了一组实验以支持我们的方法。

The use of network based approaches to model and analyse large datasets is currently a growing research field. For instance in biology and medicine, networks are used to model interactions among biological molecules as well as relations among patients. Similarly, data coming from social networks can be trivially modelled by using graphs. More recently, the use of dual networks gained the attention of researchers. A dual network model uses a pair of graphs to model a scenario in which one of the two graphs is usually unweighted (a network representing physical associations among nodes) while the other one is edge-weighted (a network representing conceptual associations among nodes). In this paper we focus on the problem of finding the Densest Connected sub-graph (DCS) having the largest density in the conceptual network which is also connected in the physical network. The problem is relevant but also computationally hard, therefore the need for introducing of novel algorithms arises. We formalise the problem and then we map DCS into a graph alignment problem. Then we propose a possible solution. A set of experiments is also presented to support our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源