论文标题
De Sitter空间中的混乱和互补性
Chaos and complementarity in de Sitter space
论文作者
论文摘要
我们认为对静态三维DE STINTER几何形状的扰动很小。对于满足无效能量条件的足够早期的扰动,结果是一个冲击波几何形状,导致在越过它的大地测量轨迹中前进。这将De Sitter空间的相反两极相互接触,就像在反DE保姆空间中的可遍历虫洞一样。在这种背景下,我们计算了超级阶的相关器(OTOC),以评估De Sitter Horizon的混乱性,并发现它是最大的混沌:我们研究的OTOC之一与Lyapunov指数成倍衰减,使lyapunov指数饱和,从而使混乱的结合饱和。我们讨论了我们成果对保姆的互补性和通货膨胀的后果。
We consider small perturbations to a static three-dimensional de Sitter geometry. For early enough perturbations that satisfy the null energy condition, the result is a shockwave geometry that leads to a time advance in the trajectory of geodesics crossing it. This brings the opposite poles of de Sitter space into causal contact with each other, much like a traversable wormhole in Anti-de Sitter space. In this background, we compute out-of-time-order correlators (OTOCs) to asses the chaotic nature of the de Sitter horizon and find that it is maximally chaotic: one of the OTOCs we study decays exponentially with a Lyapunov exponent that saturates the chaos bound. We discuss the consequences of our results for de Sitter complementarity and inflation.