论文标题
线性时间周期性抛物线运算符的主要特征值的渐近学ii:小扩散
Asymptotics of the principal eigenvalue for a linear time-periodic parabolic operator II: Small diffusion
论文作者
论文摘要
我们研究了小扩散对线性时周期抛物线算子的主要特征值,而在一维空间中,neumann边界条件为零。主要特征值的渐近行为(由于扩散系数趋于零)是针对非分化和退化空间变化的环境而建立的。一个新的发现是这些渐近行为的依赖性对漂移引起的特定普通微分方程的周期解。这些证明是基于超级/子分析的微妙结构以及比较原则的应用。
We investigate the effect of small diffusion on the principal eigenvalues of linear time-periodic parabolic operators with zero Neumann boundary conditions in one dimensional space. The asymptotic behaviors of the principal eigenvalues, as the diffusion coefficients tend to zero, are established for non-degenerate and degenerate spatial-temporally varying environments. A new finding is the dependence of these asymptotic behaviors on the periodic solutions of a specific ordinary differential equation induced by the drift. The proofs are based upon delicate constructions of super/sub-solutions and the applications of comparison principles.