论文标题
扭曲的Chevalley团体中的扭曲共轭课
Twisted conjugacy classes in twisted Chevalley groups
论文作者
论文摘要
令G为一组,并且为G。如果y = gx(g)(g)(g)^{ - 1}的两个元素x,y的两个元素是ϕ twist twist twist twist。对于G中的某些g。我们说,G组具有r _ {\ infty} -property,则对于这些conjugace conjugace的数量是veersim的,证明特征零的场k上的扭曲的雪佛莉组具有r _ {\ infty} - property以及s _ {\ infty} -property,如果k具有\ mathbb {q}或aut(k)的有限超越程度,则是周期性的。
Let G be a group and ϕ be an automorphism of G. Two elements x, y of G are said to be ϕ-twisted if y = gxϕ(g)^{-1} for some g in G. We say that a group G has the R_{\infty}-property if the number of ϕ-twisted conjugacy classes is infinite for every automorphism ϕ of G. In this paper, we prove that twisted Chevalley groups over the field k of characteristic zero have the R_{\infty}-property as well as S_{\infty}-property if k has finite transcendence degree over \mathbb{Q} or Aut(k) is periodic.