论文标题

高分辨率光子力显微镜基于尖锐的纳米型尖端

High resolution photonic force microscopy based on sharp nano-fabricated tips

论文作者

Desgarceaux, Rudy, Santybayeva, Zhanna, Battistella, Eliana, Nord, Ashley L., Braun-Breton, Catherine, Abkarian, Manouk, Maragò, Onofrio M., Charlot, Benoit, Pedaci, Francesco

论文摘要

可以通过原子力显微镜(AFM)来实现Sub-NM分辨率图像,这些样品沉积在硬基质上的样品上。但是,由于尖端引起的变形,图像柔软的界面(例如生物膜)仍然非常具有挑战性。基于光学镊子(OT)的光子力显微镜(PHFM)代表了软扫描探针显微镜的有趣替代方法。使用光而不是物理悬臂固定扫描探针会导致刚度($ k_ {ot} \ sim0.1-0.001 $ pn/nm),可以比标准悬臂($ k_ {afm} \ sim 10 $ pn/nm)低2-3个数量级。结合NM分辨率的位移测量值的分辨率,这允许成像无力诱导的人工制品的软材料。但是,迄今为止,通常选择为$ \ simμ$ m级球体的光学捕获探针的大小限制了PHFM的分辨率。在这里,我们展示了一种新颖而简单的纳米制作方案,可大规模生成光学可捕获的石英颗粒,该石英颗粒模仿AFM的尖锐尖端。我们证明并量化了颗粒的稳定捕获,其尖端高达35 nm,这是迄今为止最小的PHFM中使用的最小。带有小于80 nm的特征的刚性纳米结构的栅格扫描图像与我们的提示相比,与同一样品的AFM图像很好地比较。成像活疟疾感染的红细胞的膜不会产生可见的伪影,并揭示了与细胞内的寄生虫活性有关的亚微米结构特征。在PHFM中使用纳米工程的颗粒为高分辨率的软体和生物样品成像开辟了道路。

Sub-nm resolution images can be achieved by Atomic Force Microscopy (AFM) on samples that are deposited on hard substrates. However, it is still extremely challenging to image soft interfaces, such as biological membranes, due to the deformations induced by the tip. Photonic Force Microscopy (PhFM), based on optical tweezers (OT), represents an interesting alternative for soft scanning-probe microscopy. Using light instead of a physical cantilever to hold the scanning probe results in a stiffness ($k_{OT}\sim0.1-0.001$ pN/nm) which can be 2-3 orders of magnitude lower than that of standard cantilevers ($k_{AFM}\sim 10$ pN/nm). Combined with nm resolution of displacement measurements of the trapped probe, this allows for imaging soft materials without force-induced artefacts. However, the size of the optically trapped probe, often chosen as a $\sim μ$m-size sphere, has so far limited the resolution of PhFM. Here we show a novel and simple nanofabrication protocol to massively produce optically trappable quartz particles which mimic the sharp tips of AFM. We demonstrate and quantify the stable trapping of particles with tips as sharp as 35 nm, the smallest used in PhFM to date. Raster scan images of rigid nanostructures with features smaller than 80 nm obtained with our tips compare well with AFM images of the same samples. Imaging the membrane of living malaria-infected red blood cells produces no visible artefacts and reveals the sub-micron structural features termed knobs, related to the parasite activity within the cell. The use of nano-engineered particles in PhFM opens the way to imaging soft and biological samples at high resolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源