论文标题
对网络车辆网络物理系统的最佳欺骗攻击
Optimal deception attack on networked vehicular cyber physical systems
论文作者
论文摘要
在此,考虑了对分布式网络物理系统的虚假数据注射攻击的设计。具有线性动力学和高斯噪声的随机过程由多个试剂节点测量,每个节点配备了多个传感器。代理节点彼此之间形成了多跳网络。每个代理节点通过使用Kalman-Consensus滤波使用从相邻节点获得的传感器观察和消息来计算该过程的估计值。能够任意操纵某些或全部试剂节点的传感器观察的外部攻击者将错误注入这些传感器观察结果。攻击者的目的是将估计值尽可能接近预先指定的值,同时尊重攻击检测概率的约束。为此,提出了一个约束优化问题,以找到某些类别的线性攻击的最佳参数值。线性攻击的参数是通过随机近似和在线随机梯度下降的结合在线学习的。杂志的结果证明了攻击的功效。
Herein, design of false data injection attack on a distributed cyber-physical system is considered. A stochastic process with linear dynamics and Gaussian noise is measured by multiple agent nodes, each equipped with multiple sensors. The agent nodes form a multi-hop network among themselves. Each agent node computes an estimate of the process by using its sensor observation and messages obtained from neighboring nodes,via Kalman-consensus filtering. An external attacker, capable of arbitrarily manipulating the sensor observations of some or all agent nodes, injects errors into those sensor observations. The goal of the attacker is to steer the estimates at the agent nodes as close as possible to a pre-specified value, while respecting a constraint on the attack detection probability. To this end,a constrained optimization problem is formulated to find the optimal parameter values of a certain class of linear attacks. The parameters of linear attack are learnt on-line via a combination of stochastic approximation and online stochastic gradient descent.Numerical results demonstrate the efficacy of the attack.