论文标题
关于理性的模棱两可$ k $的天真交换结构 - 阿贝尔团体的理论
Naive-commutative structure on rational equivariant $K$-theory for abelian groups
论文作者
论文摘要
在本文中,我们计算了与Barnes,Greenlees和KęDziorekfor Tirite Abelian $ G $ G $ fif的Naive-Commutative Ring $ g $ spectra代数模型中的结缔组织和周期性等值的复杂$ k $ k $ k $ k $。我们的计算表明,这些光谱是独特的,是幼稚的指环光谱,因为它们的同型基团确定为弱等效性。我们进一步推导了模块光谱的结构定理,而不是理性的综合$ k $ - 理论。
In this paper, we calculate the image of the connective and periodic rational equivariant complex $K$-theory spectrum in the algebraic model for naive-commutative ring $G$-spectra given by Barnes, Greenlees and Kędziorek for finite abelian $G$. Our calculations show that these spectra are unique as naive-commutative ring spectra in the sense that they are determined up to weak equivalence by their homotopy groups. We further deduce a structure theorem for module spectra over rational equivariant complex $K$-theory.