论文标题
理性内核产生的极端和暴露点
Extreme and Exposed Points Arising from Rational Kernels
论文作者
论文摘要
令$β_1,...,β_n$在复杂平面的开放单位盘中是不同的点,而不是原点,让$ h^1 $为耐寒空间。定义$ \ mathbb {c}^{n} $中的封闭凸集,由$λ= \ {(f(β_1),...,f(β_n)):f \ in H^1,|| f || f || _1 \ _1 \ le 1 \} $。我们表征了$λ$的极端和暴露点
Let $β_1,...,β_n$ be distinct points in the open unit disc in the complex plane, none of which is the origin, and let $H^1$ be the Hardy space. Define a closed convex set in $\mathbb{C}^{n}$ by $Λ= \{ (f(β_1),...,f(β_n)): f \in H^1, ||f||_1 \le 1 \}$. We characterize the extreme and exposed points of $Λ$